3 research outputs found

    Applications of Genomics in Regulatory Food Safety Testing in Canada

    Get PDF
    Recent developments in the field of pathogen genomics herald a new paradigm for analytical food microbiology in which pathogenic bacteria will be characterized on the basis of their genetic profile rather than traditional approaches relying on phenotypic properties. The ability to identify gene markers associated with virulence, antimicrobial resistance, and other properties relevant to the identification, risk profiling, and typing of foodborne bacterial isolates will play a critical role in informing regulatory decisions and tracing sources of food contamination. Here we present several scenarios illustrating current and prospective roles for pathogen genomics in food inspection

    Emerging technologies and their impact on regulatory science

    Get PDF
    There is an evolution and increasing need for the utilization of emerging cellular, molecular and in silico technologies and novel approaches for safety assessment of food, drugs, and personal care products. Convergence of these emerging technologies is also enabling rapid advances and approaches that may impact regulatory decisions and approvals. Although the development of emerging technologies may allow rapid advances in regulatory decision making, there is concern that these new technologies have not been thoroughly evaluated to determine if they are ready for regulatory application, singularly or in combinations. The magnitude of these combined technical advances may outpace the ability to assess fit for purpose and to allow routine application of these new methods for regulatory purposes. There is a need to develop strategies to evaluate the new technologies to determine which ones are ready for regulatory use. The opportunity to apply these potentially faster, more accurate, and cost-effective approaches remains an important goal to facilitate their incorporation into regulatory use. However, without a clear strategy to evaluate emerging technologies rapidly and appropriately, the value of these efforts may go unrecognized or may take longer. It is important for the regulatory science field to keep up with the research in these technically advanced areas and to understand the science behind these new approaches. The regulatory field must understand the critical quality attributes of these novel approaches and learn from each other's experience so that workforces can be trained to prepare for emerging global regulatory challenges. Moreover, it is essential that the regulatory community must work with the technology developers to harness collective capabilities towards developing a strategy for evaluation of these new and novel assessment tools
    corecore